








GC 18 solder paste



## HARIMA MULTICORE GC 18

LOW VOIDING, TEMPERATURE STABLE SOLDER PASTE

HARIMA MULTICORE GC 18 is the latest in the GC range of temperature stable solder pastes. From the same stable as GC 10, this new material combines the stability performance of its predecessor with improved thermal dissipation in bottom terminated devices due to reduced voiding within the solder joint.

HARIMA MULTICORE GC 18 remains stable whether stored at room temperature for 12 months or for one month at elevated temperature (up to 40 °C) and is designed to provide excellent transfer efficiency for fine-pitch components and good fluxing action on challenging surface finishes.

GC18 is optimised to reduce the occurrence of voids in component joints, being especially effective on reducing voids in large ground-plane devices such as QFN's, DPAK's and MOSFET's. With it's specially designed fully halogen-free activator package thus it eliminates expensive nitrogen atmosphere reflow, reduces PPM defects and rework resulting in reduced processing costs.

## LOW VOIDING







## GC 18 BENEFITS

| Improved stability                                                               | Improved reflow                                                                         | Post reflow reliability                                                                                                          | Improved paste management                                   |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| On-line stencil stability. Good process capability after up to 12 hours printing | Excellent coalescence in long, hot profiles for 0201 and 0.4mm pitch components         | Specially formulated to provide<br>low voiding in soldered joints of<br>Bottom Terminated Components<br>(BTC's - QFN, DPAK, LGA) | Exceptional on-line paste utilization                       |
| At least 12x longer than conventional paste                                      | Excellent coalescence after<br>storage of printed paste for up to<br>48 hours at 80% RH | Residues are compatible with encapsulation technologies                                                                          | End of day paste scrapping eliminated                       |
| Elevated temperature stability: x100 over conventional paste                     | Minimal hot slump at 190 °C                                                             | Post reflow residues are benign<br>and cleanable with existing<br>chemistries (if required)                                      | Eliminates requirement for cold packs or overnight shipment |
| Improved logistic management                                                     | Exceptional cosmetic appearance for lead-free solder joints                             | Flux residues are suitable for in-circuit test (ICT) even after multiple reflows                                                 | Eliminates requirement for refrigerated storage             |
| Excellent long-term tackiness when small print deposit volumes required          | Wide process window in both air and nitrogen                                            | High SIR improves moisture resistance in challenging end applications                                                            | No refrigeration provides immediate start up                |

## **GC 18 ATTRIBUTES AND BENEFITS**

| ATTRIBUTE |                                | INDUSTRY STANDARD           | GC 18               | BENEFIT  |
|-----------|--------------------------------|-----------------------------|---------------------|----------|
| FLUX      | Regulatory compliance          | Halide-free or halogen-free | Zero halogens added | <b>~</b> |
|           | IPC-J-STD-004B classification  | ROL0                        | ROL0                |          |
| POWDER    | Particle size distribution     | Type 3, 4                   | Type 3, 4           |          |
|           | Alloy                          | SAC305                      | SAC305              |          |
| STORAGE   | Ambient (26.5 °C)              | 1 month                     | 12 months           | <b>~</b> |
|           | @ 40 °C                        | 1 day                       | 1 month             | ~        |
|           | @ 50 °C                        | None                        | 1 week              | <b>~</b> |
| PROCESS   | On-line paste utilisation      | 75 %                        | > 95 %              | <b>~</b> |
| PRINTING  | Abandon time                   | Up to 4 hours               | Up to 24 hours      | <b>~</b> |
|           | Stencil life                   | Up to 8 hours               | Up to 12 hours      | ~        |
|           | Startup time                   | 4-24 hours                  | Immediate           | <b>~</b> |
| REFLOW    | Soak temperature               | 150-180 °C                  | 150-200 °C          | <b>~</b> |
|           | Voids: BGA                     | IPC Class III               | IPC Class III       |          |
|           | Voids : Chip components        | < 20 %                      | < 10 %              | ~        |
|           | Voids: QFN 3mm x 3mm           | 25 %                        | < 10 %              | ~        |
|           | Voids: QFN 12mm x 12mm         | 50 %                        | < 20 %              | <b>~</b> |
|           | Voids: low maximum temperature | > 240 °C                    | > 235 °C            | <b>~</b> |
|           | Time above liquidus (217°C)    | 20-90 seconds               | 60-120 seconds      |          |

LOW VOIDING